1. Getting started with Python for science¶
This part of the Scipy lecture notes is a self-contained introduction to everything that is needed to use Python for science, from the language itself, to numerical computing or plotting.
- 1.1. Python scientific computing ecosystem
- 1.2. The Python language
- 1.3. Python 2 and Python 3
- 1.4. NumPy: creating and manipulating numerical data
- 1.5. Matplotlib: plotting
- 1.6. Scipy : high-level scientific computing
- 1.6.1. File input/output:
scipy.io
- 1.6.2. Special functions:
scipy.special
- 1.6.3. Linear algebra operations:
scipy.linalg
- 1.6.4. Interpolation:
scipy.interpolate
- 1.6.5. Optimization and fit:
scipy.optimize
- 1.6.6. Statistics and random numbers:
scipy.stats
- 1.6.7. Numerical integration:
scipy.integrate
- 1.6.8. Fast Fourier transforms:
scipy.fftpack
- 1.6.9. Signal processing:
scipy.signal
- 1.6.10. Image manipulation:
scipy.ndimage
- 1.6.11. Summary exercises on scientific computing
- 1.6.12. Full code examples for the scipy chapter
- 1.6.1. File input/output:
- 1.7. Getting help and finding documentation